Home / Configuration Tips / Routing / Understanding Policy Routing

Understanding Policy Routing

understanding policy routingLearning and understanding policy routing is crucial knowledge for any good network engineer. You’ll find quite a bit of policy routing going on in today’s production networks.  But what exactly is policy-based routing?

Policy routing

Policy-based routing, generally referred to as “policy routing”, is the use of route maps to determine the path a packet will take to get to its final destination.  As you progress through your CCNP studies and go on to the CCIE (or to a Cisco Quality Of Service certification), you’ll find that traffic can be “marked” by policy routing in order to give different levels of service to various classes of traffic.  (This is done by marking the traffic and placing the different classes of traffic in different queues in the router, allowing the administrator to give some traffic higher priority for transmission.)

There are some basic policy routing rules you should know:

Policy routing doesn’t affect the destination of the packet, but does affect the path that is taken to get there.

Policy routing can forward traffic based on the source IP address or the destination IP address (with the use of an extended ACL).

Policy routing can be configured at the interface level, or globally.

Applying policy routing on an interface affects only packets arriving on that interface:

R2(config)#int s0

R2(config-if)#ip policy route-map CHANGE_NEXT_HOP

Applying the policy globally applies the route map to packets generated on the router, not on all packets received on all interfaces.

Whether you’re running policy routing at the interface level, on packets created locally, or both, always run the command show ip policy to make sure you’ve got the right route maps on the proper interfaces.

R2#show ip policy

Interface      Route map

local             CHANGE_NEXT_HOP

Serial0        CHANGE_NEXT_HOP

Remember this rule…

If a packet doesn’t match any of the specific criteria in a route map, or does match a line that has an explicit deny statement, the data is sent to the routing process and will be processed normally.  If you don’t want to route packets that do not meet any route map criteria, the set command must be used to send those packets to the null0 interface.  This set command should be the final set command in the route map.

There are four possibilities for an incoming packet when route maps are in use.  The following example illustrates all of them.

R2(config)#access-list 29 permit host 20.1.1.1

R2(config)#access-list 30 permit host 20.2.2.2

R2(config)#access-list 31 permit host 20.3.3.3

R2(config)#access-list 32 permit host 20.4.4.4

R2(config)#route-map EXAMPLE permit 10

R2(config-route-map)#match ip address 29

R2(config-route-map)#set ip next-hop 40.1.1.1

R2(config-route-map)#route-map EXAMPLE permit 20

R2(config-route-map)#match ip address 30

Assuming the route map has been applied to the router’s ethernet0 interface, a packet sourced from 20.1.1.1 would meet the first line of the route map and have its next-hop IP address set to 40.1.1.1.

A packet sourced from 20.2.2.2 would match the next permit statement (sequence number 20).  Since there is no action listed, this packet would return to the routing engine to undergo the normal routing procedure.  All traffic that did not match these two addresses would also be routed normally – there would be no action taken by the route map.

Perhaps we want to specifically block traffic sourced from 20.3.3.3 or 20.4.4.4. We can use multiple match statements in one single route map, and have packets matching those two addresses sent to the bit bucket – the interface null0.

R2(config)#route-map EXAMPLE permit 30

R2(config-route-map)#match ip address 31

R2(config-route-map)#match ip address 32

R2(config-route-map)#set ?

as-path           Prepend string for a BGP AS-path attribute

automatic-tag     Automatically compute TAG value

comm-list         set BGP community list (for deletion)

community         BGP community attribute

dampening         Set BGP route flap dampening parameters

default           Set default information

extcommunity      BGP extended community attribute

interface         Output interface

ip                IP specific information

level             Where to import route

local-preference  BGP local preference path attribute

metric            Metric value for destination routing protocol

metric-type       Type of metric for destination routing protocol

origin            BGP origin code

tag               Tag value for destination routing protocol

weight            BGP weight for routing table

R2(config-route-map)#set interface null0

Any traffic matching ACLs 31 or 32 will be sent to null0, resulting in its being discarded by the router.  Any traffic that didn’t match any of the route map statements will be returned to the routing engine for normal processing.

Understanding policy routing and how to use is essential knowledge for network engineers.  This is also extremely useful for passing the BSCI exam, earning your CCNP, and becoming more valuable in today’s job market.  Get more experience with polic based routing consider building a home lab or rent rack time to go along with learning the theory.  The next thing you know you’ll be writing and applying policy base routes in no time at all.

Understanding Policy Routing
5 (100%)

About Joe

Senior Network Engineer, technology enthusiast, guitar and bass player. Joe Wilson is the creator of RouterFreak.com as well as other niche websites that can be found around on the Internets.

Check Also

ip subnet-zero

Subnet-Zero and All-Ones-Subnet explained

Article Contents1 All-Zeros-Subnet (Subnet-Zero)2 All-Ones-Subnet3 Problems using All-Zeros/All-Ones Subnets4 Router configuration example5 Certification advice6 Conclusions The …

Leave a Reply

Your email address will not be published. Required fields are marked *